

UNIVERSITY OF JYVÄSKYLÄ

X-ray tomographic study of wetting bentonite

Tero Harjupatana Department of Physics, University of Jyväskylä BOA seminar 19.8.2014

Goal

To develop and apply experimental techniques based on X-ray tomography (CT) in order to

- provide data for finding the relevant hydromechanical and transport properties of wetting bentonite
- provide a data bank for validating hydromechanical models of bentonite buffer

→ Utilize CT to measure water content of wetting and swelling bentonite in 3D as a function of time (4D imaging)

X-ray tomography A non-invasive 3D imaging method

Parts

- X-ray source (a)
- Sample (b)
- Detector (c)
- Computer
- Procedure
 - X-ray images from different angles (scan)
 - Reconstruction
 (~ 3D density map)
 - Data analysis and visualization

CT device and measuring principle

Skyscan 1172 micro-CT

- Table top device
- Best resolution ~ 2 μ m
- Max practical sample size
 ~ 3.0 x 1.5 cm
- Scanning time 1 h 1 day

Measuring principle:

- Sequential CT imaging of bentonite sample during wetting (2 days – 2 weeks)
- 3D displacement due to swelling found by image correlation technique
- Water content analyzed using difference images

Requirements

- Stability
- Optimal selection of measuring parameters
- Careful calibration and compensation of imaging artefacts
 - Latest development: "Dynamic Flat-field correction"

Al plates with different thickness are used in Dynamic Flat-field correction

Samples and sample holder

- Compacted cylindrical bentonite sample doped with small marker particles (hollow glass spheres)
- Sample is held in a constant volume (2.3 cm³) and wetted through one end

Measurement details

- Reference scan of dry sample
- Wetting initiated
- Scans at appropriate times, typically 10 times in 1-2 weeks. Duration of one scan ~ 45 min
- The total mass of water in the sample is achieved by weighings

X-ray image

Reconstructed slice

3D visualization

Deformation analysis

ΒM

- Block-matching (BM) algorithm in 3D
- Rubber sample and COMSOL were used to test BM

Water content analysis

- Water content can be calculated if the partial densities of water and bentonite are known $(\eta = \rho_w / \rho_b)$
- Linear equation for bentonite-water system is $\mu \approx a_b \rho_b + a_w \rho_w$
- Constants a_b and a_w are determined by calibration samples
- The initial and the new density of bentonite can be calculated from dry image and deformations respectively

Dry sample (μ_0)

Wetted sample (μ_1)

Difference $(\Delta \mu = \mu_1 - \mu_0)$

Method validation

- Sample preparation, reference scan and wetting were done as before
- The sample was scanned at some intermediate time
- The sample was removed and cutted into slices
- Water content of the slices was determined by drying in oven
- Water content was also calculated with the CT method

Water content and deformations

Water content in 1D

Swelling pressure

4.0

3.5

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

0.5

Pressure [MPa]

2 3 0 Time [days] Dry density: 1.31 g/cm³

Dry density: 1.23 g/cm³ Water: Allard-pH-7 (TDS ~ 0.26 g/L)

Bentonite: MP Biomedicals (purified)

Bentonite: CaMT (27 %), NaMT (73 %) Water: Posiva ref. 2 (TDS = 10 g/L)

End A (wetting)

4

– – End B

Conclusions

- 4D X-ray tomographic imaging method for monitoring deformation and water transport in swelling bentonite completed (finally)
- The method allows measuring
 - 3D displacement field
 - 3D water content distribution (ρ_{b} and ρ_{w}) and
 - swelling pressure from both ends

as a function of time

Next step: application to MX-80 bentonite

UNIVERSITY OF JYVÄSKYLÄ

Thank you

